COVID-19 Vaccine Update

April 15, 2021

H. Dirk Sostman, MD FACR Ernest Cockrell Jr Presidential Distinguished Chair EVP & Chief Academic Officer

mRNA Vaccines: How do they work?

RNA is biological software, cellular instructions to make any protein

It does not enter the cell nucleus or incorporate into DNA

Why mRNA? Why Now?

Research on mRNA therapy dates back more than 40 years

Why mRNA? Why Now?

Because long-standing obstacles are being overcome

Systemic Delivery

Requires carrier that protects mRNA integrity and preferentially delivers to target cell

Intracellular Delivery

Requires carrier to cross cytoplasmic membrane

Protection from rapid degradation

Minor modifications protect the RNA long enough to give the cell its instructions

Thanks to advances in nanotechnology and virology

Vaccine Technology: mRNA vs Viral Vector

How is the viral vector technology different from the mRNA technology?

Viral vector delivers DNA, not RNA and uses non-replicating virus instead of lipid particles

EUA Authorized Vaccines

			Protection			
	EUA	Protection from Symptomatic Illness	from Severe Illness	Protection from Hospitalization or Death	Exact numbers quoted for	
moderna	(US, UK, EU)	94%	100%	100%	 vaccines vary depending on efficacy, AND: clinical trial or "real world evidence" outcome criteria length of follow 	
Pfizer	(US, UK, EU)	95% (US) 100% (S Africa)	90%	100%		
Johnson "Johnson	(US, EU)	72% (US) 68% (LatAm) 64% (S. Africa)	82% - 88%	100%	up which country what time period 	

EUA Authorized Vaccines

	EUA	Protection from Asymptomatic Infection	Provides Sterilizing Immunity	Accumulating evidence	
moderna	VS, UK, EU	66% After 1 st dose	Yes (monkeys)	suggests vaccines will protect against	
P fizer	VS, UK, EU	90% After second dose	Yes (monkeys)	asymptomatic infection – and transmission – with efficacy similar to their protection from symptomatic infection.	
Johnson Johnson	S, EU	74% Single dose	Yes (monkeys)		

otomatic ion – and mission – efficacy r to their ction from tomatic ion.

Vaccination in the Real World

- Real World Data on vaccinated groups
 - -Israel 96% protection from infection
 - -Scotland hospitalization reduced by 85% (Pfizer) and 94% (Astra Zeneca)
 - -Scotland 30% reduction in household contact infections after one dose
 - England vaccine efficacy 73% (Astra Zeneca) to 89% (Pfizer)
 - Houston Methodist reduced employees' positive test rate 95%
 - -CDC study vaccination reduces incidence rate of all infections by 97%
 - -Cambridge Health 75% reduction in asymptomatic infection

Durability of Antibody Response (Moderna)

Vaccine Safety Overview

Phase 3 Clinical Trials

- How many people received the vaccine?
 - -Pfizer 46,307
 - -Moderna 15,208
 - –J&J 23,190
- Severe reactions in vaccine groups?
 - Nothing beyond what was seen in placebo group or general population
- There is 6 months of safety follow up on thousands of people

Real World Experience

- A few rare reactions seen with wide deployment of vaccines:
 - –Small number of severe allergic reactions (mostly Moderna and Pfizer)
 - Extended duration of local reaction in injected arm (mostly Moderna)
 - -Systemic rashes
 - -Possible rare blood clot risk (J&J)
- 121 million people have been vaccinated in the US!

Johnson & Johnson Clot Risk?

- FDA & CDC have "paused" use of J&J vaccine to investigate reports of cerebral venous clots
- 6 cases in 6.8 million vaccinations (maybe now 8 cases)
- Is it due to the vaccine? Reasons why it might not be
 - -Baseline incidence of CVST is 1 / 100,000 people / year, much more than seen with vaccine so far
 - Devasgayam Stroke July 2016; Coutinho Stroke September 2012
- Is it due to the vaccine? Reasons why it might be
 - -Only seen in young women
 - -Similar clinical picture seen in Europe with Astra Zeneca vaccine that also uses adenoviral vector technology
 - -Schultz NEJM April 2021; Greinacher April 2021

Safety Databases Monitored by FDA and CDC

- CDC V-Safe
- CDC National Healthcare safety network (NHSN)
- FDA insuror / payor databases
- CDC / FDA Vaccine Adverse Event Reporting System (VAERS)
- CDC Vaccine Safety Datalink (VSD)
- CDC. Clinical Immunization Safety assessment (CISA) Project
- FDA Biologics Effectiveness and Safety System (BEST)
- FDA Sentinel Initiative
- DOD DOD VAERS
- DOD Vaccine Adverse Event Clinical System
- VA VA Adverse Drug Event Reporting System (VA ADERS)
- VA VA Electronic Health Record and Active Surveillance System

Other Life Risks

- Major bleeding from low dose aspirin 1/500 / year
- Death from COVID 1/600 / year
- Fatal stroke 1/2,000 / year
- Motor vehicle fatality 1 / 10,000 / year
- Cerebral venous sinus thrombosis (baseline) 1 / 100,000 / year
- Blood clot with Astra Zeneca vaccine 1 / 100,000 / vaccination
- Severe nonfatal reaction to Pfizer vaccine 1/300,000 / vaccination
- Blood clot with J&J vaccine 1 / 1,000,000 / vaccination
- Death from lightning strike 1 / 15,000,000 / year

Risks of COVID-19 in the USA

- Risk of COVID infection = 10% (9.2%)
- Risk of long term side effects and disability = 30%
- Risk of hospitalization if infected = 10% (9% 40%)
- Risk of death if hospitalized = 10% (7% 70%)
- Actual risk of death from COVID in the USA = 1/600 (0.17%)

Update on Viral Variants

- All viruses mutate and evolve with selective pressure
- SARS-CoV-2 mutates relatively slowly, but huge number of infections gives it many chances
- Concern is if mutants have dangerous new properties
 - -Increased transmission
 - -Increased severity
 - Resistance to treatments (esp Abs)

SARS-CoV-2 Evolution During 2020

Antibodies May Not "Recognize" Spike Protein with Too Much Change

RECEPTOR-BINDING DOMAIN

This area helps the virus bind to receptors on cells. The variants that have emerged in South Africa, Brazil and the U.K. have mutations here.

Viral mutations

WT (D614)

Mutant (G614)

Viral mutations

• N501Y

- -B.1.1.7 (501.Y.V1) -U.K.
- -501.Y.V2 S. Africa
- –P.1 Brazil
- –All have other mutations
- -All appear more transmissible

Viral Variants and mAb Therapy

March 24, 2021:

US government and Eli Lilly stop distributing single monoclonal antibody preparation

 Preparedness
 Emergency
 About ASPR
 Office of the Assistant Sected

 Public Health Emergency
 Public Health and Medical Emergency Support for a Nation Prepared
 Sected

 PHE Home > Emergency > Events > 2019 Novel Coronavirus > ASPR's Portfolio of COVID-19 MCMs >
 Sec

 Bamlanivimab
 Sected
 Sec

Outpatient Monoclonal Antibody Treatment for COVID-19 Made Available under Emergency Use Authorization

March 24, 2021 Update on COVID-19 variants and impact on bamlanivimab distribution

The Assistant Secretary for Preparedness and Response (ASPR) and the Food and Drug Administration (FDA) within the U.S. Department of Health and Human Services remain committed to ensuring you receive timely and transparent communication regarding the COVID-19 monoclonal antibody treatments that are currently authorized for emergency use in certain patients for the treatment of COVID-19.

Given the sustained increase in SARS-CoV-2 viral variants in the United States that are resistant to bamlanivimab administered alone, and the availability of other authorized monoclonal antibody therapies that are expected to retain activity to these variants, the U.S. Government, in coordination with Eli Lilly and Company, will stop the distribution of bamlanivimab alone starting today, March 24, 2021.

FDA recently updated the authorized Fact Sheet for Healthcare Providers for the bamlanivimab emergency use authorization (EUA). This update advised healthcare providers to consider the use of alternative authorized monoclonal antibody therapies that are expected to retain activity against circulating viral variants. Using an alternative authorized monoclonal antibody therapy may reduce the risk of treatment failure should a patient be infected with a SARS-CoV-2 viral variant that is resistant to bamlanivimab alone. Alternative monoclonal antibody therapies that are currently authorized for the same use include bamlanivimab and etesevimab administered together and REGEN-COV.

Viral Variants and Vaccines

Vaccine Efficacy	UK - B.1.1.7	S Africa - B.1.351
Pfizer	85% (SIREN study)	1.25 - 6x reduction*
Moderna	89%	4x -10x reduction*
181	72% (USA data)	57%
Astra Zeneca	76%	10%

*Data from the lab in model systems. May not reflect real life.

For example, Pfizer vaccine was 100% effective in preventing COVID-19 infection in S Africa trial

Variants in Houston

- Houston Methodist Department of Pathology and Genomic Medicine is sequencing genomes of virtually all SARS-CoV-2 infections detected in our population
- Based on 10,300 viral genomes to date
- Variant of interest

-B.1.526 (*n* = 19), B.1.525 (*n* = 21), P.2 (*n* = 84)

- Variant of concern
 - -B.1.1.7 (*n* = 1243), B.1.351 (*n* = 4), P.1 (*n* = 14)
 - -B.1.427 (n = 78), B.1.429 (n = 326)
- Most recent samples show the B.1.1.7 variant is ~70% of samples
 - Fortunately, all three approved vaccines are efficacious against this variant
 - If variant acquires E484K mutation, that could change

Summary: Viral Variants

- Viral variants are an expected development
- Medical significance varies
- Variants are a minority of cases in Houston Methodist population
 - -B.1.1.7 will be the dominant strain in Houston this spring
- Reduction in antibody (post-infection or post-vaccination) effectiveness?
 - Variants have evaded single monoclonal antibody preparation two mAb's needed now
 - –Lab data suggest reduced but preserved efficacy of immune (convalescent or vaccinated) serum against model viruses
 - Data do not show significant reduction in clinical efficacy of FDA-cleared vaccines against current variants
 - -Likely that boosters will be needed in future

